

The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure

This work was supported entirely by the N ational H eart, Lung, and Blood Institute. The Executive Committee, writing teams, and reviewers served as volunteers without remuneration.

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health
National Heart, Lung, and Blood Institute
National High Blood Pressure Education Program
NIH Publication No. 03-5233
May 2003

Chair
Aram V. Chobanian, M .D. (Boston University M edical Center, Boston, M A)

Executive Committee

George L. Bakris, M .D. (Rush Presbyterian-St. Luke's M edical Center, Chicago, IL); H enry R. Black, M .D. (Rush Presbyterian-St. Luke's M edical Center, Chicago, IL); William C. Cushman, M .D. (Veterans Affairs M edical Center, M emphis, TN); Lee A. Green, M.D., M.P.H . (University of M ichigan, Ann Arbor, M I); Joseph L. Izzo, Jr., M.D. (State University of N ew York at Buffalo School of M edicine, Buffalo, NY); Daniel W. Jones, M.D. (University of M ississippi M edical C enter, Jackson, M S); Barry J. M aterson, M .D., M .B.A. (University of M iami, M iami, FL); Suzanne O paril, M .D. (University of Alabama at Birmingham, Birmingham, AL); Jackson T. Wright, J r., M .D., Ph.D. (Case Western Reserve University, Cleveland, OH)

Executive Secretary

Edward J. Roccella, Ph.D., M .P.H . (N ational Heart, Lung, and Blood Institute, Bethesda, M D)

National High Blood Pressure Education Program
 Coordinating Committee Participants

Claude Lenfant, M .D., Chair (N ational Heart, Lung, and Blood Institute, Bethesda, M D); George L. Bakris, M.D. (Rush Presbyterian-St. Luke's M edical Center, Chicago, IL); H enry R. Black, M .D. (Rush PresbyterianSt. Luke's M edical Center, Chicago, IL); Vicki Burt, Sc.M ., R.N . (N ational Center for H ealth Statistics, H yattsville, M D); Barry L. Carter, Pharm.D. (University of Iowa, Iowa City, IA); Jerome D. Cohen, M .D. (Saint Louis University School of M edicine, St. Louis, M O); Pamela J. Colman, D.P.M . (American Podiatric M edical Association, Bethesda, M D); William C. Cushman, M.D. (Veterans Affairs M edical Center, M emphis, TN); M ark J. Cziraky, Pharm.D., F.A.H .A. (H ealth Core, Inc., N ewark, DE); John J. Davis, P.A.-C. (American A cademy of Physician Assistants, M emphis, TN); K eith Copelin Ferdinand, M .D., F.A.C.C. (H eartbeats Life Center, N ew Orleans, LA); Ray W. Gifford, Jr., M .D., M .S. (Cleveland Clinic Foundation, Fountain Hills, AZ); M ichael Glick, D.M .D. (UM DNJ—N ew Jersey Dental School, N ewark, NJ); Lee A. Green, M .D., M .P.H . (University of M ichigan, Ann Arbor, M I); Stephen H avas, M .D., M .P.H ., M .S. (University of M aryland School of M edicine, Baltimore, M D); Thomas H. H ostetter, M .D. (N ational Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, M D); Joseph L. Izzo, Jr., M .D. (State University of N ew York at Buffalo School of M edicine, Buffalo, NY); Daniel W. Jones, M.D. (University of M ississippi M edical Center, Jackson, M S); Lynn K irby, R.N ., N.P., C.O.H .N .-S. (SanofiSynthelabo Research, M alvern, PA); K athryn M . Kolasa, Ph.D., R.D., L.D.N.
(Brody School of M edicine at East Carolina University, Greenville, N C); Stuart Linas, M .D. (University of Colorado H ealth Sciences Center, Denver, CO); William M. M anger, M .D., Ph.D. (N ew York University M edical Center, N ew York, NY); Edwin C. M arshall, O .D., M .S., M .P.H . (Indiana University School of O ptometry, Bloomington, IN); Barry J. M aterson, M .D., M .B.A. (University of M iami, M iami, FL); Jay M erchant, M .H.A. (Centers for M edicare \& M edicaid Services, Washington, DC); N ancy H ouston M iller, R.N ., B.S.N . (Stanford University School of M edicine, Palo Alto, CA); M arvin M oser, M .D. (Yale University School of M edicine, Scarsdale, N Y); William A. N ickey, D.O. (Philadelphia College of O steopathic M edicine, Philadelphia, PA); Suzanne O paril, M .D. (University of Alabama at Birmingham, Birmingham, AL); O telio S. Randall, M .D., F.A.C.C. (H oward University H ospital, Washington, DC); James W. Reed, M .D., F.A.C.P., F.A.C.E. (M orehouse School of M edicine, Atlanta, GA); Edward J. R occella, Ph.D., M .P.H . (N ational Heart, Lung, and Blood Institute, Bethesda, M D); Lee Shaughnessy (N ational Stroke Association, Englew ood,CO);
Sheldon G. Sheps, M.D. (M ayo Clinic, R ochester, M N); David B. Snyder, R.Ph., D.D.S. (H ealth Resources and Services Administration, R ockville, M D); James R. Sowers, M .D. (SUN Y H ealth Science Center at Brooklyn, Brooklyn, N Y); Leonard M . Steiner, M .S., O.D. (Eye Group, Oakhurst, NJ); Ronald Stout, M .D., M .P.H . (Procter and Gamble, M ason, OH); Rita D. Strickland, Ed.D., R.N. (N ew York Institute of Technology, Springfield Gardens, NY); Carlos Vallbona, M .D. (Baylor College of M edicine, H ouston, TX); H oward S. Weiss, M .D., M .P.H . (Georgetown University M edical Center, Washington H ospital Center, Walter Reed Army M edical Center, Washington, DC); Jack P. Whisnant, M .D. (M ayo Clinic and M ayo M edical School, Rochester, M N); Laurie Willshire, M .P.H ., R.N . (American Red Cross, Falls Church, VA); Gerald J. Wilson, M .A., M .B.A. (Citizens for Public A ction on H igh Blood Pressure and Cholesterol, Inc., Potomac, M D); M ary Winston, Ed.D., R.D. (American H eart Association, Dallas, TX); J ackson T. Wright, Jr., M .D., Ph.D., F. A.C.P. (Case Western Reserve University, Cleveland, OH)

William B. A pplegate, M .D., M .P.H. (Wake Forest University School of M edicine, W inston Salem, N C); Jan N . Basile, M .D., F.A.C.P. (Veterans Administration H ospital, Charleston, SC); Robert Carey, M .D., (University of Virginia H ealth System, Charlottesville, VA); Victor Dzau, M .D. (Brigham and Women's H ospital, Boston, M A); Brent M . Egan, M .D. (M edical University of South Carolina, Charleston, SC); Bonita Falkner, M .D. (Jefferson M edical College, Philadelphia, PA); J ohn M . Flack, M .D., M .P.H. (Wayne State University School of M edicine, Detroit, M I); Edward D. Frohlich, M .D. (Ochsner Clinic Foundation, N ew Orleans, LA); H aralambos Gavras, M.D. (Boston University School of M edicine, Boston, M A); M artin Grais, M .D. (Feinberg School of M edicine, N orthwestern University, Chicago, IL); Willa A. H sueh, M .D. (D avid Geffen School of M edicine, UCLA Department of M edicine, Los A ngeles, CA); K enneth A. Jamerson, M .D. (University of M ichigan M edical Center, Ann Arbor, M I); N orman M.
K aplan, M.D. (University of Texas Southwestern M edical Center, D allas, TX); Theodore A. K otchen, M.D. (M edical College of Wisconsin, M ilwaukee, WI); Daniel Levy, M.D. (N ational Heart, Lung, and Blood Institute, Framingham, M A); M ichael A. M oore, M.D. (Dan River Region Cardiovascular H ealth Initiative Program, D anville, VA); Thomas J. M oore, M .D. (Boston University M edical Center, Boston, M A); Vasilios Papademetriou, M .D., F.A.C.P., F.A.C.C. (Veterans Affairs M edical Center, Washington, DC); Carl J. Pepine, M .D. (University of Florida, College of M edicine, Gainesville, FL); Robert A. Phillips, M.D., Ph.D. (N ew York University, Lenox Hill Hospital, N ew York, N Y); Thomas G. Pickering, M .D., D.Phil. (M ount Sinai M edical Center, N ew York, NY); L. M ichael Prisant, M .D., F.A.C.C., F.A.C.P. (M edical C ollege of Georgia, A ugusta, GA); C. Venkata S. Ram, M .D. (University of Texas Southw estern M edical Center and Texas Blood Pressure Institute, D allas, TX); Elijah Saunders, M .D., F.A.C.C., F.A.C.P. (University of M aryland School of M edicine, Baltimore, M D); Stephen C. Textor, M .D. (M ayo Clinic, Rochester, M N); D onald G. Vidt, M .D. (Cleveland Clinic Foundation, Cleveland, OH); M yron H. Weinberger, M.D. (Indiana University School of M edicine, Indianapolis, IN); Paul K. Whelton, M .D., M .Sc. (Tulane University Health Sciences Center, N ew O rleans, LA)

Staff

J oanne K arimbakas, M.S., R.D. (Prospect Associates, Ltd., now part of A merican Institutes for Research H ealth Program, Silver Spring, M D)

We appreciate the assistance of Carol Creech, M .I.L.S. and Gabrielle Gessner (Prospect Associates, Ltd., now part of American Institutes for Research H ealth Program, Silver Spring, M D).
The National High Blood Pressure Education Program (NHBPEP)
Coordinating Committee Member Organizations
American Academy of Family Physicians
A merican A cademy of N eurology
American Academy of O phthalmology
A merican A cademy of Physician Assistants
A merican Association of O ccupational Health Nurses
American College of Cardiology
American College of Chest Physicians
American College of Occupational and Environmental M edicine
American College of Physicians-A merican Society of Internal M edicine
American College of Preventive M edicine
American Dental Association
A merican Diabetes A ssociation
American Dietetic Association
A merican Heart Association
A merican H ospital Association
American M edical Association
American N urses Association
A merican O ptometric Association
A merican O steopathic A ssociation
American Pharmaceutical Association
American Podiatric M edical Association
A merican Public H ealth Association
American Red Cross
A merican Society of H ealth-System Pharmacists
A merican Society of H ypertension
American Society of N ephrology
Association of Black Cardiologists
Citizens for Public Action on High Blood Pressure and Cholesterol, Inc.
H ypertension Education Foundation, Inc.
International Society on Hypertension in Blacks
N ational Black N urses Association, Inc.
National Hypertension Association, Inc.
N ational Kidney Foundation, Inc.
N ational M edical Association
N ational O ptometric A ssociation
N ational Stroke Association
N HLBI Ad H oc Committee on M inority Populations
Society for Nutrition Education
The Society of Geriatric Cardiology

Federal Agencies:

A gency for H ealthcare Research and Q uality Centers for M edicare \& M edicaid Services Department of Veterans Affairs H ealth Resources and Services Administration N ational Center for Health Statistics N ational Heart, Lung, and Blood Institute N ational Institute of Diabetes and Digestive and Kidney Diseases

CONTENTS

Preface xi
Abstract xiii
Introduction 1
Methodology 1
Classification of Blood Pressure 2
Cardiovascular Disease Risk 2
Benefits of Lowering Blood Pressure 3
Blood Pressure Control Rates 4
Accurate Blood Pressure Measurement in the Office 4
Ambulatory Blood Pressure Monitoring 5
Self-Measurement of Blood Pressure 5
Patient Evaluation 5
Laboratory Tests and Other Diagnostic Procedures 6
Treatment 7
Goals of Therapy 7
Lifestyle Modifications 7
Pharmacologic Treatment 7
Achieving Blood Pressure Control in Individual Patients 13
Followup and Monitoring 14
Special Considerations 14
Compelling Indications 14
Ischemic Heart Disease 14
Heart Failure 15
Diabetic Hypertension 15
Chronic Kidney Disease 16
Cerebrovascular Disease 16
Other Special Situations 16
Minorities 16
Obesity and the metabolic syndrome 16
Left ventricular hypertrophy 17
Peripheral arterial disease 17
Hypertension in older persons 17
Postural hypotension 17
Dementia 17
Hypertension in women 18
Hypertension in children and adolescents 18
Hypertensive urgencies and emergencies 18
Additional Considerations in Antihypertensive Drug Choices 19
Potential favorable effects 19
Potential unfavorable effects 19
Improving Hypertension Control 19
Adherence to Regimens 19
Resistant Hypertension 20
Public Health Challenges and Community Programs 21
Evidence Classification 23
Study Abbreviations 25
Reference List 27

Since the "Sixth Report of the Joint N ational Committee on the Prevention, Detection, Evaluation, and Treatment of H igh Blood Pressure (JNC 6)" was released in 1997, new knowledge has come to light from a variety of sources. The N ational H igh Blood Pressure Education Program C oordinating Committee (N H BPEP CC), which represents 46 professional, voluntary, and Federal organizations, has periodically reviewed the emerging findings during its biannual meetings. Eventually, a critical mass of information accumulated that generated much demand for a seventh report. M y decision to appoint a JN C 7 Committee was predicated on four reasons: (1) publication of many new hypertension observational studies and clinical trials; (2) need for a new, clear, and concise guideline that would be useful for clinicians; (3) need to simplify the classification of blood pressure; and (4) clear recognition that the JNC reports were not being used to their maximum benefit.

Dr. Aram Chobanian was selected as the JNC 7 chair because, like his predecessors, he is well versed in hypertension, yet independent of these major studies. TheJNC 7 Executive Committee and writing teams were selected entirely from the NH BPEP CC because they are recognized as experts in their disciplines by their peers. Dr. Chobanian and his colleagues set-and met-a goal of completing and publishing this work in 5 months because of the urgency of applying the new information to improve hypertension prevention and treatment.

This has been a remarkable accomplishment, but the task of N H BPEP CC numbers is far from over. They and many others are now charged with disseminating the JNC 7 report, because none of this-neither the research studies nor the recommendations-will matter, unless the JNC 7 is applied. To facilitate its application, the JNC 7 will be produced in two versions. A "JNC 7 Express" has been developed for busy clinicians. A longer version to be published later will provide for a broader and more detailed review of the recommendations. Additional professional and patient education tools will support implementation of the JNC 7 recommendations.

Dr. Chobanian has our deep appreciation for leading the JNC 7 Executive and C oordinating Committee members in developing this new report. I feel confident that this represents a landmark document and that its application will greatly improve our ability to address a very important public health problem.

[^0]The "Seventh Report of the Joint N ational Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure" provides a new guideline for hypertension prevention and management. The following are the report's key messages:

- In persons older than 50 years, systolic blood pressure greater than 140 mmH g is a much more important cardiovascular disease (CVD) risk factor than diastolic blood pressure.
- The risk of CVD beginning at $115 / 75 \mathrm{mmH} g$ doubles with each increment of $20 / 10 \mathrm{mmH}$ g; individuals who are normotensive at age 55 have a 90 percent lifetime risk for developing hypertension.
- Individuals with a systolic blood pressure of $120-139 \mathrm{mmH}$ g or a diastolic blood pressure of $80-89 \mathrm{mmH}$ g should be considered as prehypertensive and require health-promoting lifestyle modifications to prevent CVD.
- Thiazidetype diuretics should be used in drug treatment for most patients with uncomplicated hypertension, either alone or combined with drugs from other classes. Certain high-risk conditions are compelling indications for the initial use of other antihypertensive drug classes (angiotensin converting enzyme inhibitors, angiotensin receptor blockers, beta-blockers, calcium channel blockers).
- M ost patients with hypertension will require two or more antihypertensive medications to achieve goal blood pressure ($<140 / 90 \mathrm{mmH} \mathrm{g}$, or $<130 / 80 \mathrm{mmH}$ g for patients with diabetes or chronic kidney disease).
- If blood pressure is $>20 / 10 \mathrm{mmH}$ g above goal blood pressure, consideration should be given to initiating therapy with two agents, one of which usually should be a thiazide-type diuretic.
- The most effective therapy prescribed by the most careful clinician will control hypertension only if patients are motivated. M otivation improves when patients have positive experiences with, and trust in, the clinician. Empathy builds trust and is a potent motivator.
- In presenting these guidelines, the committee recognizes that the responsible physician's judgment remains paramount.

For more than three decades, the N ational Heart, Lung, and Blood Institute (N HLBI) has coordinated the N ational High Blood Pressure Education Program (N H BPEP), a coalition of 39 major professional, public, and voluntary organizations and seven Federal Agencies. One important function is to issue guidelines and advisories designed to increase aw areness, prevention, treatment, and control of hypertension (high blood pressure (BP)). Since the publication of the "Sixth Report of the Joint N ational Committee on the Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC 6)" released in 1997, ${ }^{1}$ many largescale clinical trials have been published. The decision to appoint a JNC 7 committee was based on four factors: (1) publication of many new hypertension observational studies and clinical trials; (2) need for a new, clear, and concise guideline that would be useful for clinicians; (3) need to simplify the classification of blood pressure; and (4) clear recognition that the JNC reports were not being used to their maximum benefit. This JNC report is presented in two separate publications: a current, succinct, practical guide and a more comprehensive report to be published separately, which will provide a broader discussion and justification for the current recommendations. In presenting these guidelines, the committee recognizes that the responsible physician's judgment is paramount in managing patients.

METHODOLOGY
Since the publication of the JNC 6 report, the N H BPEP Coordinating Committee (CC), chaired by the director of the NHLBI , has regularly reviewed and discussed the hypertension clinical trials at its biannual meetings. In many instances, the principal investigator of the larger studies has presented the information directly to the CC. The committee's presentations and reviews are summarized and posted on the NHLBI Web site. ${ }^{2}$ In agreeing to commission a new report, the Director requested that the CC members provide in writing a detailed rationale explaining the necessity to update the guidelines and to describe the critical issues and concepts to be considered for a new report. The JNC 7 chair was selected, plus a nine-member Executive Committee appointed entirely from the N H BPEP CC membership. The N HBPEP CC served as members of five writing teams, each of which was cochaired by two Executive Committee members. The concepts identified by the N H BPEP CC membership were used to develop the report outline. A timeline was developed to complete and publish the work in 5 months. Based on the identified critical issues and concepts, the Executive Committee identified relevant M edical Subject Headings (M eSH) terms and keywords to further review the
scientific literature. These M eSH terms were used to generate M EDLIN E searches that focused on English language peer-reviewed scientific literature from J anuary 1997 through A pril 2003. Various systems of grading the evidence were considered, and the classification scheme used in the JNC 6 report and other N H BPEP clinical guidelines was selected ${ }^{3.4}$ which classifies studies in a process adapted from Last and A bramson. ${ }^{5}$ The Executive Committee met on six occasions, two of which included meetings with the entire N H BPEP CC. The writing teams also met by teleconference and used electronic communications to develop the report. Twenty-four drafts were created and reviewed in a reiterative fashion. At its meetings, the Executive Committee used a modified nominal group process to identify and resolve issues. The NHBPEP CC reviewed the penultimate draft and provided written comments to the Executive Committee. In addition, 33 national hypertension leaders reviewed and commented on the document. The N HBPEP CC approved the JNC 7 report.

CLASSIFICATION OF BLOOD PRESSURE

Table 1 provides a classification of BP for adults ages 18 and older. The classification is based on the average of two or more properly measured, seated BP readings on each of two or more office visits. In contrast to the classification provided in the JNC 6 report, a new category designated prehypertension has been added, and stages 2 and 3 hypertension have been combined. Patients with prehypertension are at increased risk for progression to hypertension; those in the 130-139/80-89 mmH g BP range are at twice the risk to develop hypertension as those with lower values. ${ }^{6}$

CARDIOVASCULAR DISEASE RISK

H ypertension affects approximately 50 million individuals in the United States and approximately 1 billion worldwide. As the population ages, the prevalence of hypertension will increase even further unless broad and effective preventive measures are implemented. Recent data from the Framingham H eart Study suggest that individuals who are normotensive at age 55 have a 90 percent lifetime risk for developing hypertension. ${ }^{7}$

The relationship between BP and risk of CVD events is continuous, consistent, and independent of other risk factors. The higher the BP, the greater is the chance of heart attack, heart failure, stroke, and kidney disease. For individu-

Table 1. Classification and management of blood pressure for adults*

BP Classification	SBP* MMHG	DBP* mmHg	Lifestyle Modification	InItial drug therapy	
				Without Compelling Indication	With Compelling Indications (See Table 8)
Normal	<120	and <80	Encourage		
Prehypertension	120-139	or 80-89	Yes	No antihypertensive drug indicated.	Drug(s) for compelling indications. ${ }^{\ddagger}$
Stage 1 Hypertension	140-159	or 90-99	Yes	Thiazide-type diuretics for most. May consider ACEI, ARB, BB, CCB, or combination.	Drug(s) for the compelling indications. ${ }^{\ddagger}$ Other antihypertensive drugs (diuretics, ACEI,
Stage 2 Hypertension	≥ 160	or ≥ 100	Yes	Two-drug combination for most ${ }^{\dagger}$ (usually thiazide-type diuretic and ACEI or ARB or BB or CCB).	ARB, BB, CCB) as needed.

DBP, diastolic blood pressure; SBP, systolic blood pressure.
Drug abbreviations: ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; BB, beta-blocker; CCB, calcium channel blocker.

* Treatment determined by highest BP category.
† Initial combined therapy should be used cautiously in those at risk for orthostatic hypotension.
\ddagger Treat patients with chronic kidney disease or diabetes to BP goal of $<130 / 80 \mathrm{mmHg}$.
als 40-70 years of age, each increment of 20 mmH g in systolic BP (SBP) or 10 mmHg in diastolic BP (DBP) doubles the risk of CVD across the entire BP range from $115 / 75$ to $185 / 115 \mathrm{mmH}$ g. ${ }^{.}$

The classification "prehypertension," introduced in this report (table 1), recognizes this relationship and signals the need for increased education of health care professionals and the public to reduce BP levels and prevent the development of hypertension in the general population. ${ }^{9} \mathrm{H}$ ypertension prevention strategies are available to achieve this goal. (See "Lifestyle M odifications" section.)

BENEFITS OF LOWERING BLOOD PRESSURE
In clinical trials, antihypertensive therapy has been associated with reductions in stroke incidence averaging 35-40 percent; myocardial infarction, 20-25 percent; and heart failure, more than 50 percent. ${ }^{10}$ It is estimated that in patients with stage 1 hypertension (SBP $140-159 \mathrm{mmH} g$ and/or DBP $90-99 \mathrm{mmH}$ g) and additional cardiovascular risk factors, achieving a sustained 12 mmH g reduction in SBP over 10 years will prevent 1 death for every 11 patients treated. In the presence of CVD or target organ damage, only 9 patients would require such BP reduction to prevent a death. ${ }^{11}$

Table 2. Trends in awareness, treatment, and control of high blood pressure in adults ages $18-74^{*}$

	National Health and Nutrition Examination Survey, Percent			
	II $(\mathbf{1 9 7 6 - 8 0)}$	III (Phase 1 1988-91)	III (Phase 2 1991-94)	1999-2000
Awareness	51	73	68	70
Treatment	31	55	54	59
Control †	10	29	27	34

* High blood pressure is systolic blood pressure (SBP) $\geq 140 \mathrm{mmHg}$ or diastolic blood pressure (DBP) $\geq 90 \mathrm{mmHg}$ or taking antihypertensive medication.
\dagger SBP $<140 \mathrm{mmHg}$ and DBP $<90 \mathrm{mmHg}$.
Sources: Unpublished data for 1999-2000 computed by M. Wolz, National Heart, Lung, and Blood Institute; JNC 6. ${ }^{1}$

BLOOD PRESSURE CONTROL RATES
H ypertension is the most common primary diagnosis in America (35 million office visits as the primary diagnosis). ${ }^{12}$ Current control rates (SBP <140 mmHg and DBP $<90 \mathrm{mmHg}$), though improved, are still far below the H ealthy People 2010 goal of 50 percent; 30 percent are still unaware they have hypertension. (See table 2.) In the majority of patients, controlling systolic hypertension, which is a more important CVD risk factor than DBP except in patients younger than age 50^{13} and occurs much more commonly in older persons, has been considerably more difficult than controlling diastolic hypertension. Recent clinical trials have demonstrated that effective BP control can be achieved in most patients who are hypertensive, but the majority will require two or more antihypertensive drugs. ${ }^{14,15} \mathrm{~W}$ hen clinicians fail to prescribe lifestyle modifications, adequate antihypertensive drug doses, or appropriate drug combinations, inadequate BP control may result.

ACCURATE BLOOD PRESSURE MEASUREMENT IN THE OFFICE

The auscultatory method of BP measurement with a properly calibrated and validated instrument should be used. ${ }^{16}$ Persons should be seated quietly for at least 5 minutes in a chair (rather than on an exam table), with feet on the floor, and arm supported at heart level. M easurement of BP in the standing position is indicated periodically, especially in those at risk for postural hypotension. An appropriatesized cuff (cuff bladder encircling at least 80 percent of the arm) should be used to ensure accuracy. At least two measurements should be made. SBP is the point at which the first of two or more sounds is heard
(phase 1), and DBP is the point before the disappearance of sounds (phase 5). Clinicians should provide to patients, verbally and in writing, their specific BP numbers and BP goals.

AMBULATORY BLOOD PRESSURE MONITORING
A mbulatory blood pressure monitoring (ABPM) ${ }^{17}$ provides information about BP during daily activities and sleep. ABPM is warranted for evaluation of "white-coat" hypertension in the absence of target organ injury. It is also helpful to assess patients with apparent drug resistance, hypotensive symptoms with antihypertensive medications, episodic hypertension, and autonomic dysfunction. The ambulatory BP values are usually lower than clinic readings. Awake, individuals with hypertension have an average BP of more than $135 / 85 \mathrm{mmHg}$ and during sleep, more than $120 / 75 \mathrm{mmH}$ g. The level of BP measurement by using ABPM correlates better than office measurements with target organ injury. ${ }^{18}$ ABPM also provides a measure of the percentage of BP readings that are elevated, the overall BP load, and the extent of BP reduction during sleep. In most individuals, BP decreases by 10 to 20 percent during the night; those in whom such reductions are not present are at increased risk for cardiovascular events.

SELF-MEASUREMENT OF BLOOD PRESSURE

BP self measurements may benefit patients by providing information on response to antihypertensive medication, improving patient adherence with therapy ${ }^{19}$ and in evaluating whitecoat hypertension. Persons with an average BP more than $135 / 85 \mathrm{mmH}$ g measured at home are generally considered to be hypertensive. H ome measurement devices should be checked regularly for accuracy.

PATIENT EVALUATION

Evaluation of patients with documented hypertension has three objectives: (1) to assess lifestyle and identify other cardiovascular risk factors or concomitant disorders that may affect prognosis and guide treatment (table 3);
(2) to reveal identifiable causes of high BP (table 4); and (3) to assess the presence or absence of target organ damage and CVD. The data needed are acquired through medical history, physical examination, routine laboratory tests, and other diagnostic procedures. The physical examination should

Table 3. Cardiovascular risk factors
Major Risk Factors
Hypertension*
Cigarette smoking
Obesity* (body mass index $\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$)
Physical inactivity
Dyslipidemia*
Diabetes mellitus*
Microalbuminuria or estimated GFR $<60 \mathrm{~mL} / \mathrm{min}$
Age (older than 55 for men, 65 for women)
Family history of premature cardiovascular disease
(men under age 55 or women under age 65)

Target Organ Damage

Heart

- Left ventricular hypertrophy
- Angina or prior myocardial infarction
- Prior coronary revascularization
- Heart failure

Brain

- Stroke or transient ischemic attack

Chronic kidney disease
Peripheral arterial disease
Retinopathy
GFR, glomerular filtration rate.

* Components of the metabolic syndrome.

Table 4. Identifiable causes of hypertension

Sleep apnea
Drug-induced or related causes (see table 9)
Chronic kidney disease
Primary aldosteronism
Renovascular disease
Chronic steroid therapy and Cushing's syndrome
Pheochromocytoma
Coarctation of the aorta
Thyroid or parathyroid disease
include an appropriate measurement of BP, with verification in the contralateral arm; examination of the optic fundi; calculation of body mass index (BM I) (measurement of waist circumference also may be useful); auscultation for carotid, abdominal, and femoral bruits; pal pation of the thyroid gland; thorough examination of the heart and lungs; examination of the abdomen for enlarged kidneys, masses, and abnormal aortic pulsation; palpation of the lower extremities for edema and pulses; and neurological assessment.

Laboratory Tests and Other Diagnostic Procedures

R outine laboratory tests recommended before initiating therapy include an electrocardiogram; urinalysis; blood glucose and hematocrit; serum potassium, creatinine (or the corresponding estimated glomerular filtration rate [GFR]), and calcium; ${ }^{20}$ and a lipid profile, after 9 - to 12 -hour fast, that includes highdensity lipoprotein cholesterol and low-density lipoprotein cholesterol, and triglycerides. Optional tests include measurement of urinary albumin excretion or albumin/creatinine ratio. M ore extensive testing for identifiable causes is not indicated generally unless BP control is not achieved.

Goals of Therapy

The ultimate public health goal of antihypertensive therapy is the reduction of cardiovascular and renal morbidity and mortality. Since most persons with hypertension, especially those age ≥ 50 years, will reach the DBP goal once SBP is at goal, the primary focus should be on achieving the SBP goal. Treating SBP and DBP to targets that are $<140 / 90 \mathrm{mmH} g$ is associated with a decrease in CVD complications. In patients with hypertension and diabetes or renal disease, the BP goal is $<130 / 80 \mathrm{mmH}$ g. ${ }^{21,22}$

Lifestyle Modifications

A doption of healthy lifestyles by all persons is critical for the prevention of high BP and is an indispensable part of the management of those with hypertension. M ajor lifestyle modifications shown to lower BP include weight reduction in those individuals who are overweight or obese, ${ }^{23,24}$ adoption of the Dietary A pproaches to Stop H ypertension (DASH) eating plan²5 which is rich in potassium and calcium, ${ }^{26}$ dietary sodium reduction, ${ }^{25-27}$ physical activity, ${ }^{28,29}$ and moderation of alcohol consumption. (See table 5.) ${ }^{30}$ Lifestyle modifications reduce BP , enhance antihypertensive drug efficacy, and decrease cardiovascular risk. For example, a $1,600 \mathrm{mg}$ sodium DASH eating plan has effects similar to single drug therapy. ${ }^{25}$ Combinations of two (or more) lifestyle modifications can achieve even better results.

Pharmacologic Treatment

There are excellent clinical outcome trial data proving that lowering BP with several classes of drugs, including angiotensin converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (AR Bs), beta-blockers (BBs), calcium channel blockers (CCBs), and thiazidetype diuretics, will all reduce the complications of hypertension. ${ }^{10,31-37}$ Tables 6 and 7 provide a list of commonly used antihypertensive agents.

Thiazide-type diuretics have been the basis of antihypertensive therapy in most outcome trials. ${ }^{37}$ In these trials, including the recently published Antihypertensive and Lipid Lowering Treatment to Prevent H eart Attack Trial (ALLHAT), ${ }^{33}$ diuretics have been virtually unsurpassed in preventing the cardiovascular complications of hypertension. The exception is the Second A ustralian N ational Blood Pressure trial which reported slightly better outcomes in White men with a regimen that began with an ACEI compared to one starting with a diuretic. ${ }^{36}$ Diuretics enhance the antihypertensive efficacy

Table 5. Lifestyle modifications to manage hypertension* ${ }^{*}$

Modification	Recommendation	Approximate SBP Reduction (Range)
Weight reduction	Maintain normal body weight (body mass index $18.5-24.9 \mathrm{~kg} / \mathrm{m}^{2}$).	$5-20 \mathrm{mmHg} / 10 \mathrm{~kg}$ weight loss ${ }^{23,24}$
Adopt DASH eating plan	Consume a diet rich in fruits, vegetables, and lowfat dairy products with a reduced content of saturated and total fat.	$8-14 \mathrm{mmHg}^{25,26}$
Dietary sodium reduction	Reduce dietary sodium intake to no more than 100 mmol per day (2.4 g sodium or 6 g sodium chloride).	$2-8 \mathrm{mmHg}^{25-27}$
Physical activity	Engage in regular aerobic physical activity such as brisk walking (at least 30 min per day, most days of the week).	4-9 mmHg ${ }^{28,29}$
Moderation of alcohol consumption	Limit consumption to no more than 2 drinks (1 oz or 30 mL ethanol; e.g., 24 oz beer, 10 oz wine, or 3 oz 80-proof whiskey) per day in most men and to no more than 1 drink per day in women and lighter weight persons.	$2-4 \mathrm{mmHg}^{30}$

DASH, Dietary Approaches to Stop Hypertension.

* For overall cardiovascular risk reduction, stop smoking.
\dagger The effects of implementing these modifications are dose and time dependent, and could be greater for some individuals.
of multidrug regimens, can be useful in achieving BP control, and are more affordable than other antihypertensive agents. D espite these findings, diuretics remain underutilized. ${ }^{39}$

Thiazide-type diuretics should be used as initial therapy for most patients with hypertension, either alone or in combination with one of the other classes (ACEIs, ARBs, BBs, CCBs) demonstrated to be beneficial in randomized controlled outcome trials. The list of compelling indications requiring the use of other antihypertensive drugs as initial therapy are listed in table 8. If a drug is not tolerated or is contraindicated, then one of the other classes proven to reduce cardiovascular events should be used instead.

Table 6. Oral antihypertensive drugs*

Class	Drug (Trade Name)	Usual dose range in mg/day (Daily Frequency)
Thiazide diuretics	```chlorothiazide (Diuril) chlorthalidone (generic) hydrochlorothiazide (Microzide, HydroDIURIL`) polythiazide (Renese) indapamide (Lozol`) metolazone (Mykrox) metolazone (Zaroxolyn)```	$\begin{aligned} & 125-500(1) \\ & 12.5-25(1) \\ & 12.5-50(1) \\ & 2-4(1) \\ & 1.25-2.5(1) \\ & 0.5-1.0(1) \\ & 2.5-5(1) \end{aligned}$
Loop diuretics	bumetanide (Bumex ${ }^{\dagger}$) furosemide (Lasix ${ }^{\dagger}$) torsemide (Demadex ${ }^{\dagger}$)	$\begin{aligned} & 0.5-2(2) \\ & 20-80(2) \\ & 2.5-10(1) \end{aligned}$
Potassium-sparing diuretics	amiloride (Midamor ${ }^{\dagger}$) triamterene (Dyrenium)	$\begin{aligned} & 5-10(1-2) \\ & 50-100(1-2) \end{aligned}$
Aldosterone receptor blockers	eplerenone (Inspra) spironolactone (Aldactone ${ }^{\dagger}$)	$\begin{aligned} & 50-100(1-2) \\ & 25-50(1-2) \end{aligned}$
Beta-blockers	atenolol (Tenormin ${ }^{\dagger}$) betaxolol (Kerlone ${ }^{\dagger}$) bisoprolol (Zebeta ${ }^{\dagger}$) metoprolol (Lopressor ${ }^{\dagger}$) metoprolol extended release (Toprol XL) nadolol (Corgard ${ }^{\dagger}$) propranolol (Inderal ${ }^{\dagger}$) propranolol long-acting (Inderal LA ${ }^{\dagger}$) timolol (Blocadren ${ }^{\dagger}$)	$\begin{aligned} & 25-100(1) \\ & 5-20(1) \\ & 2.5-10(1) \\ & 50-100(1-2) \\ & 50-100(1) \\ & 40-120(1) \\ & 40-160(2) \\ & 60-180(1) \\ & 20-40(2) \end{aligned}$
Beta-blockers with intrinsic sympathomimetic activity	acebutolol (Sectral ${ }^{\dagger}$) penbutolol (Levatol) pindolol (generic)	$\begin{aligned} & 200-800(2) \\ & 10-40(1) \\ & 10-40(2) \end{aligned}$
Combined alpha- and beta-blockers	carvedilol (Coreg) labetalol (Normodyne, Trandate ${ }^{\dagger}$)	$\begin{aligned} & 12.5-50(2) \\ & 200-800(2) \end{aligned}$

Table 6. Oral antihypertensive drugs* (continued)

Class	Drug (Trade Name)	Usual dose range in mg/day (Daily Frequency)
ACE inhibitors	benazepril (Lotensin ${ }^{\dagger}$) captopril (Capoten ${ }^{\dagger}$) enalapril (Vasotec ${ }^{\dagger}$) fosinopril (Monopril) lisinopril (Prinivil, Zestril ${ }^{\dagger}$) moexipril (Univasc) perindopril (Aceon) quinapril (Accupril) ramipril (Altace) trandolapril (Mavik)	$\begin{aligned} & 10-40(1-2) \\ & 25-100(2) \\ & 2.5-40(1-2) \\ & 10-40(1) \\ & 10-40(1) \\ & 7 \cdot 5-30(1) \\ & 4-8(1-2) \\ & 10-40(1) \\ & 2.5-20(1) \\ & 1-4(1) \end{aligned}$
Angiotensin II antagonists	candesartan (Atacand) eprosartan (Tevetan) irbesartan (Avapro) losartan (Cozaar) olmesartan (Benicar) telmisartan (Micardis) valsartan (Diovan)	$\begin{aligned} & 8-32(1) \\ & 400-800(1-2) \\ & 150-300(1) \\ & 25-100(1-2) \\ & 20-40(1) \\ & 20-80(1) \\ & 80-320(1) \end{aligned}$
Calcium channel blockers-non-Dihydropyridines	diltiazem extended release (Cardizem CD, Dilacor XR, Tiazac †) diltiazem extended release (Cardizem LA) verapamil immediate release (Calan, Isoptin ${ }^{\dagger}$) verapamil long acting (Calan SR, Isoptin SR ${ }^{\dagger}$) verapamil-Coer (Covera HS, Verelan PM)	$\begin{aligned} & 180-420(1) \\ & 120-540(1) \\ & 80-320(2) \\ & 120-360(1-2) \\ & 120-360(1) \end{aligned}$
Calcium channel blockersDihydropyridines	amlodipine (Norvasc) felodipine (Plendil) isradipine (Dynacirc CR) nicardipine sustained release (Cardene SR) nifedipine long-acting (Adalat CC, Procardia XL) nisoldipine (Sular)	$\begin{aligned} & 2.5-10(1) \\ & 2.5-20(1) \\ & 2.5-10(2) \\ & 60-120(2) \\ & 30-60(1) \\ & 10-40(1) \end{aligned}$

Table 6. Oral antihypertensive drugs* (continued)

Class	Drug (Trade Name)	Usual dose range in mg/day (Daily Frequency)
Alpha ${ }_{1}$-blockers	doxazosin (Cardura) prazosin (Minipress ${ }^{\dagger}$) terazosin (Hytrin)	$\begin{aligned} & 1-16(1) \\ & 2-20(2-3) \\ & 1-20(1-2) \end{aligned}$
Central alpha ${ }_{2}$-agonists and other centrally acting drugs	```clonidine (Catapres }\mp@subsup{}{}{\dagger clonidine patch (Catapres-TTS) methyldopa (Aldomet }\mp@subsup{}{}{\dagger}\mathrm{) reserpine (generic) guanfacine (generic)```	$\begin{aligned} & 0.1-0.8(2) \\ & 0.1-0.3 \text { (1wkly) } \\ & 250-1,000(2) \\ & 0.05^{\ddagger}-0.25(1) \\ & 0.5-2(1) \end{aligned}$
Direct vasodilators	hydralazine (Apresoline ${ }^{\dagger}$) minoxidil (Loniten ${ }^{\dagger}$)	$\begin{aligned} & 25-100(2) \\ & 2.5-80(1-2) \end{aligned}$

* These dosages may vary from those listed in the "Physicians' Desk Reference." 38
\dagger Are now or will soon become available in generic preparations.
$\ddagger \quad$ A 0.1 mg dose may be given every other day to achieve this dosage.

Table 7. Combination drugs for hypertension

Combination Type*	Fixed-Dose Combination, mg ${ }^{\dagger}$	Trade Name
ACEIs and CCBs	Amlodipine/benazepril hydrochloride ($2.5 / 10,5 / 10,5 / 20,10 / 20$) Enalapril maleate/felodipine (5/5) Trandolapril/verapamil (2/180, 1/240, 2/240, 4/240)	Lotrel Lexxel Tarka
ACEIs and diuretics	Benazepril/hydrochlorothiazide (5/6.25, 10/12.5, 20/12.5, 20/25) Captopril/hydrochlorothiazide ($25 / 15,25 / 25,50 / 15,50 / 25$) Enalapril maleate/hydrochlorothiazide (5/12.5, 10/25) Lisinopril/hydrochlorothiazide ($10 / 12.5,20 / 12.5,20 / 25$) Moexipril $\mathrm{HCI} /$ hydrochlorothiazide ($7.5 / 12.5,15 / 25$) Quinapril HCI/hydrochlorothiazide (10/12.5, 20/12.5, 20/25)	Lotensin HCT Capozide Vaseretic Prinzide Uniretic Accuretic
ARBs and diuretics	Candesartan cilexetil/hydrochlorothiazide (16/12.5, 32/12.5) Eprosartan mesylate/hydrochlorothiazide ($600 / 12.5,600 / 25$) Irbesartan/hydrochlorothiazide ($150 / 12.5,300 / 12.5$) Losartan potassium/hydrochlorothiazide (50/12.5, 100/25) Telmisartan/hydrochlorothiazide (40/12.5, 80/12.5) Valsartan/hydrochlorothiazide (80/12.5, 160/12.5)	Atacand HCT Teveten/HCT Avalide Hyzaar Micardis/HCT Diovan/HCT
BBs and diuretics	Atenolol/chlorthalidone (50/25, 100/25) Bisoprolol fumarate/hydrochlorothiazide (2.5/6.25, 5/6.25, 10/6.25) Propranolol LA/hydrochlorothiazide (40/25, 80/25) Metoprolol tartrate/hydrochlorothiazide (50/25, 100/25) Nadolol/bendrofluthiazide (40/5, 80/5) Timolol maleate/hydrochlorothiazide (10/25)	Tenoretic Ziac Inderide Lopressor HCT Corzide Timolide
Centrally acting drug and diuretic	Methyldopa/hydrochlorothiazide (250/15, 250/25, 500/30, 500/50) Reserpine/chlorothiazide ($0.125 / 250,0.25 / 500$) Reserpine/hydrochlorothiazide ($0.125 / 25,0.125 / 50$)	Aldoril Diupres Hydropres
Diuretic and diuretic	Amiloride $\mathrm{HCl} /$ hydrochlorothiazide (5/50) Spironolactone/hydrochlorothiazide (25/25,50/50) Triamterene/hydrochlorothiazide (37.5/25, 50/25, 75/50)	Moduretic Aldactone Dyazide, Maxzide

[^1]M ost patients who are hypertensive will require two or more antihypertensive medications to achieve their BP goals. ${ }^{14,15}$ Addition of a second drug from a different class should be initiated when use of a single drug in adequate doses fails to achieve the BP goal. W hen BP is more than $20 / 10 \mathrm{mmH}$ g above goal, consideration should be given to initiating therapy with two drugs, either as separate prescriptions or in fixed-dose combinations. (See figure 1.) The initiation of drug therapy with more than one agent may increase the likelihood of achieving the BP goal in a more timely fashion, but particular caution is advised in those at risk for orthostatic hypotension, such as patients with diabetes, autonomic dysfunction, and some older persons. Use of generic drugs or combination drugs should be considered to reduce prescription costs.

Figure 1. Algorithm for treatment of hypertension

DBP, diastolic blood pressure; SBP, systolic blood pressure.
Drug abbreviations: ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; $B B$, beta-blocker; $C C B$, calcium channel blocker.

O nce antihypertensive drug therapy is initiated, most patients should return for followup and adjustment of medications at approximately monthly intervals until the BP goal is reached. M ore frequent visits will be necessary for patients with stage 2 hypertension or with complicating comorbid conditions. Serum potassium and creatinine should be monitored at least 1-2 times/year. ${ }^{60}$ After BP is at goal and stable, followup visits can usually be at 3 - to 6 -month intervals. C omorbidities, such as heart failure, associated diseases such as diabetes, and the need for laboratory tests influence the frequency of visits. Other cardiovascular risk factors should be treated to their respective goals, and tobacco avoidance should be promoted vigorously. Low-dose aspirin therapy should be considered only when BP is controlled, because the risk of hemorrhagic stroke is increased in patients with uncontrolled hypertension. ${ }^{61}$

SPECIAL CONSIDERATIONS

The patient with hypertension and certain comorbidities requires special attention and followup by the clinician.

Compelling Indications

Table 8 describes compelling indications that require certain antihypertensive drug classes for high-risk conditions. The drug selections for these compelling indications are based on favorable outcome data from clinical trials. A combination of agents may be required. Other management considerations include medications already in use, tolerability, and desired BP targets. In many cases, specialist consultation may be indicated.

Ischemic Heart Disease

Ischemic heart disease (IHD) is the most common form of target organ damage associated with hypertension. In patients with hypertension and stable angina pectoris, the first drug of choice is usually a BB; alternatively, long-acting CCBs can be used. ${ }^{1}$ In patients with acute coronary syndromes (unstable angina or myocardial infarction), hypertension should be treated initially with BBs and ACEIs, ${ }^{49}$ with addition of other drugs as needed for BP control. In patients with postmyocardial infarction, ACEIs, BBs, and aldosterone antagonists have proven to be most beneficial. ${ }^{50,52,53,62}$ Intensive lipid management and aspirin therapy are also indicated.

Table 8．Clinical trial and guideline basis for compelling indications for individual drug classes

	Recommended Drugs ${ }^{\dagger}$						
Compeling Indication＊	U 岕 号	¢	亗	$\frac{\infty}{4}$	®0	5 4 0 8 4	Clinical Trial Basis ${ }^{\ddagger}$
Heart failure	－	－	－	－		－	ACC／AHA Heart Failure Guideline，${ }^{40}$ MERIT－HF，${ }^{41}$ COPERNICUS，${ }^{42}$ CIBIS，${ }^{43}$ SOLVD，${ }^{44}$ AIRE，${ }^{45}$ TRACE，${ }^{46}$ ValHEFT，${ }^{47}$ RALES ${ }^{48}$
Postmyocardial infarction		－	－			－	ACC／AHA Post－MI Guideline，${ }^{49}$ BHAT，${ }^{50}$ SAVE，${ }^{51}$ Capricorn，${ }^{52}$ EPHESUS ${ }^{53}$
High coronary disease risk	－	－	－		－		ALLHAT，${ }^{33}$ HOPE，${ }^{34}$ ANBP2，${ }^{36}$ LIFE，${ }^{32}$ CONVINCE ${ }^{31}$
Diabetes	－	－	－	－	－		NKF－ADA Guideline，${ }^{2,122}$ UKPDS，${ }^{54}$ ALLHAT ${ }^{33}$
Chronic kidney disease			－	－			NFK Guideline，${ }^{22}$ Captopril Trial，s RENAAL，${ }^{56}$ IDNT，${ }^{57}$ REIN，${ }^{58}$ AASK ${ }^{59}$
Recurrent stroke prevention	－		－				PROGRESS ${ }^{35}$

＊Compelling indications for antihypertensive drugs are based on benefits from outcome studies or existing clinical guidelines；the compelling indication is managed in parallel with the BP．
\dagger Drug abbreviations：ACEI，angiotensin converting enzyme inhibitor；ARB，angiotensin receptor blocker； Aldo ANT，aldosterone antagonist；BB，beta－blocker；CCB，calcium channel blocker．
\ddagger Conditions for which clinical trials demonstrate benefit of specific classes of antihypertensive drugs．

Heart Failure

Heart failure（HF），in the form of systolic or diastolic ventricular dysfunction， results primarily from systolic hypertension and IH D．Fastidious BP and cho－ lesterol control are the primary preventive measures for those at high risk for H F．.40 In asymptomatic individuals with demonstrable ventricular dysfunction， ACEIs and BBs are recommended．${ }^{52,62}$ For those with symptomatic ventricular dysfunction or end－stage heart disease，ACEIs，BBs，ARBs and aldosterone blockers are recommended along with loop diuretics．${ }^{40-48}$

Diabetic Hypertension

Combinations of two or more drugs are usually needed to achieve the target goal of $<130 / 80 \mathrm{mmH}$ g．${ }^{21,22}$ Thiazide diuretics，BBs，ACEIs，ARBs，and CCBs are beneficial in reducing CVD and stroke incidence in patients with dia－ betes．${ }^{33,5,4,63}$ ACEI－or ARB－based treatments favorably affect the progression of diabetic nephropathy and reduce albuminuria，${ }^{55,56}$ and ARBs have been shown to reduce progression to macroalbuminuria．${ }^{56,57}$

In people with chronic kidney disease (CKD), as defined by either (1) reduced excretory function with an estimated GFR below $60 \mathrm{ml} / \mathrm{min}$ per $1.73 \mathrm{~m}^{2}$ (corresponding approximately to a creatinine of $>1.5 \mathrm{mg} / \mathrm{dL}$ in men or $>1.3 \mathrm{mg} / \mathrm{dL}$ in women), ${ }^{20}$ or (2) the presence of albuminuria ($>300 \mathrm{mg} /$ day or 200 mg albumin/g creatinine), therapeutic goals are to slow deterioration of renal function and prevent CVD. H ypertension appears in the majority of these patients, and they should receive aggressive BP management, often with three or more drugs to reach target BP values of $<130 / 80 \mathrm{mmH}$. $.59,64 \mathrm{ACEIS}$ and ARBs have demonstrated favorable effects on the progression of diabetic and nondiabetic renal disease. ${ }^{55-59,64} \mathrm{~A}$ limited rise in serum creatinine of as much as 35 percent above baseline with ACEIs or ARBs is acceptable and is not a reason to withhold treatment unless hyperkalemia develops. ${ }^{65}$ W ith advanced renal disease (estimated GFR $<30 \mathrm{ml} / \mathrm{min} 1.73 \mathrm{~m}^{2}$, corresponding to a serum creatinine of $2.5-3 \mathrm{mg} / \mathrm{dL}$), increasing doses of loop diuretics are usually needed in combination with other drug classes.

Cerebrovascular Disease

The risks and benefits of acute lowering of BP during an acute stroke are still unclear; control of BP at intermediate levels (approximately $160 / 100 \mathrm{mmH}$ g) is appropriate until the condition has stabilized or improved. Recurrent stroke rates are lowered by the combination of an ACEI and thiazidetype diuretic. ${ }^{35}$

Other Special Situations

M inorities

BP control rates vary in minority populations and are lowest in M exican Americans and N ative Americans. ${ }^{1}$ In general, the treatment of hypertension is similar for all demographic groups, but socioeconomic factors and lifestyle may be important barriers to BP control in some minority patients. The prevalence, severity, and impact of hypertension are increased in A frican A mericans, who also demonstrate somewhat reduced BP responses to monotherapy with BBs, ACEIs, or ARBs compared to diuretics or CCBs.
These differential responses are largely eliminated by drug combinations that include adequate doses of a diuretic. ACEI-induced angioedema occurs 2-4 times more frequently in African American patients with hypertension than in other groups. ${ }^{33}$

0 besity and the metabolic syndrome

O besity ($\mathrm{BM} \mathrm{I} \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$) is an increasingly prevalent risk factor for the development of hypertension and CVD. The A dult Treatment Panel III guideline
for cholesterol management defines the metabolic syndrome as the presence of three or more of the following conditions: abdominal obesity (waist circumference >40 inches in men or >35 inches in women), glucose intolerance (fasting glucose $\geq 110 \mathrm{mg} / \mathrm{dL}$), BP $\geq 130 / 85 \mathrm{mmH}$ g, high triglycerides (≥ 150 $\mathrm{mg} / \mathrm{dL}$), or low HDL ($<40 \mathrm{mg} / \mathrm{dL}$ in men or $<50 \mathrm{mg} / \mathrm{dL}$ in women). ${ }^{66}$ Intensive lifestyle modification should be pursued in all individuals with the metabolic syndrome, and appropriate drug therapy should be instituted for each of its components as indicated.

Left ventricular hypertrophy

Left ventricular hypertrophy (LVH) is an independent risk factor that increases the risk of subsequent CVD. Regression of LVH occurs with aggressive BP management, including weight loss, sodium restriction, and treatment with all classes of antihypertensive agents except the direct vasodilators hydralazine, and minoxidil. ${ }^{1.67}$

Peripheral arterial disease

Peripheral arterial disease (PAD) is equivalent in risk to IHD. Any class of antihypertensive drugs can be used in most PAD patients. Other risk factors should be managed aggressively, and aspirin should be used.

H ypertension in older persons

H ypertension occurs in more than two-thirds of individuals after age 65. ${ }^{1}$ This is also the population with the lowest rates of BP control. ${ }^{68}$ Treatment recommendations for older people with hypertension, including those who have isolated systolic hypertension, should follow the same principles outlined for the general care of hypertension. In many individuals, lower initial drug doses may be indicated to avoid symptoms; however, standard doses and multiple drugs are needed in the majority of older people to reach appropriate BP targets.

Postural hypotension

A decrease in standing SBP $>10 \mathrm{mmH} \mathrm{g}$, when associated with dizziness or fainting, is more frequent in older patients with systolic hypertension, diabetes, and those taking diuretics, venodilators (e.g., nitrates, alpha-blockers, and sildenafillike drugs), and some psychotropic drugs. BP in these individuals should also be monitored in the upright position. Caution should be used to avoid volume depletion and excessively rapid dose titration of antihypertensive drugs.

Dementia

Dementia and cognitive impairment occur more commonly in people with hypertension. Reduced progression of cognitive impairment may occur with effective antihypertensive therapy. ${ }^{69,70}$

H ypertension in women

O ral contraceptives may increase BP, and the risk of hypertension increases with duration of use. Women taking oral contraceptives should have their BP checked regularly. Development of hypertension is a reason to consider other forms of contraception. In contrast, menopausal hormone therapy does not raise BP. ${ }^{\text {¹ }}$

Women with hypertension who become pregnant should be followed carefully because of increased risks to mother and fetus. M ethyldopa, BBs, and vasodilators are preferred medications for the safety of the fetus. ${ }^{12} \mathrm{ACEI}$ and ARBs should not be used during pregnancy because of the potential for fetal defects and should be avoided in women who are likely to become pregnant. Preeclampsia, which occurs after the 20th week of pregnancy, is characterized by new-onset or worsening hypertension, albuminuria, and hyperuricemia, sometimes with coagulation abnormalities. In some patients, preeclampsia may develop into a hypertensive urgency or emergency and may require hospitalization, intensive monitoring, early fetal delivery, and parenteral antihypertensive and anticonvulsant therapy. ${ }^{72}$

H ypertension in children and adolescents

In children and adolescents, hypertension is defined as BP that is, on repeated measurement, at the 95th percentile or greater adjusted for age, height, and gender. ${ }^{73}$ The fifth Korotkoff sound is used to define DBP. Clinicians should be alert to the possibility of identifiable causes of hypertension in younger children (i.e., kidney disease, coarctation of the aorta). Lifestyle interventions are strongly recommended, with pharmacologic therapy instituted for higher levels of BP or if there is insufficient response to lifestyle modifications. ${ }^{74}$ Choices of antihypertensive drugs are similar in children and adults, but effective doses for children are often smaller and should be adjusted carefully. ACEIs and ARBs should not be used in pregnant or sexually active girls. Uncomplicated hypertension should not be a reason to restrict children from participating in physical activities, particularly because long-term exercise may lower BP. Use of anabolic steroids should be strongly discouraged. Vigorous interventions also should be conducted for other existing modifiable risk factors (e.g., smoking).

H ypertensive urgencies and emergencies

Patients with marked BP elevations and acute target-organ damage (e.g., encephalopathy, myocardial infarction, unstable angina, pulmonary edema, eclampsia, stroke, head trauma, lifethreatening arterial bleeding, or aortic dissection) require hospitalization and parenteral drug therapy. ${ }^{1}$ Patients with markedly elevated BP but without acute target organ damage usually do not require hospitalization, but they should receive immediate combination oral
antihypertensive therapy. They should be carefully evaluated and monitored for hypertension-induced heart and kidney damage and for identifiable causes of hypertension. (See table 4.)

Additional Considerations in Antihypertensive Drug Choices

A ntihypertensive drugs can have favorable or unfavorable effects on other comorbidities.

Potential favorable effects

Thiazide-type diuretics are useful in slowing demineralization in osteoporosis. BBs can be useful in the treatment of atrial tachyarrhythmias/fibrillation, migraine, thyrotoxicosis (short term), essential tremor, or perioperative hypertension. CCBs may be useful in Raynaud's syndrome and certain arrhythmias, and alpha-blockers may be useful in prostatism.

Potential unfavorable effects

Thiazide diuretics should be used cautiously in patients who have gout or who have a history of significant hyponatremia. BBs should generally be avoided in individuals who have asthma, reactive airways disease, or second or third degree heart block. ACEIs and ARBs should not be given to women likely to become pregnant and are contraindicated in those who are. ACEIs should not be used in individuals with a history of angioedema. Aldosterone antagonists and potassium-sparing diuretics can cause hyperkalemia and should generally be avoided in patients who have serum potassium values more than $5.0 \mathrm{mEq} / \mathrm{L}$ while not taking medications.

Adherence to Regimens

Behavioral models suggest that the most effective therapy prescribed by the most careful clinician will control hypertension only if the patient is motivated to take the prescribed medication and to establish and maintain a health-promoting lifestyle. M otivation improves when patients have positive experiences with and trust in their clinicians. Empathy both builds trust and is a potent motivator. ${ }^{75}$

Patient attitudes are greatly influenced by cultural differences, beliefs, and previous experiences with the health care system. ${ }^{76}$ These attitudes must be understood if the clinician is to build trust and increase communication with patients and families.

Failure to titrate or combine medications, despite knowing the patient is not at goal $B P$, represents clinical inertia and must be overcome. ${ }^{77}$ Decision support systems (i.e., electronic and paper), flow sheets, feedback reminders, and involvement of nurse clinicians and pharmacists can be helpful. ${ }^{78}$

The clinician and the patient must agree upon BP goals. A patient-centered strategy to achieve the goal and an estimation of the time needed to reach goal are important. ${ }^{79}$ When BP is above goal, alterations in the plan should be documented. BP self-monitoring can also be useful.

Patients' nonadherence to therapy is increased by misunderstanding of the condition or treatment, denial of illness because of lack of symptoms or perception of drugs as symbols of ill health, lack of patient involvement in the care plan, or unexpected adverse effects of medications. The patient should be made to feel comfortable in telling the clinician all concerns and fears of unexpected or disturbing drug reactions.

The cost of medications and the complexity of care (i.e., transportation, patient difficulty with polypharmacy, difficulty in scheduling appointments, and life's competing demands) are additional barriers that must be overcome to achieve goal BP.

All members of the health care team (e.g., physicians, nurse case managers, and other nurses, physician assistants, pharmacists, dentists, registered dietitians, optometrists, and podiatrists) must work together to influence and reinforce instructions to improve patients' lifestyles and BP control. ${ }^{80}$

Resistant Hypertension

Resistant hypertension is the failure to reach goal BP in patients who are adhering to full doses of an appropriate threedrug regimen that includes a diuretic. After excluding potential identifiable hypertension (see table 4), clinicians should carefully explore reasons why the patient is not at goal BP. (See table 9.) Particular attention should be paid to diuretic type and dose in relation to renal function. (See "Chronic Kidney Disease" section.) Consultation with a hypertension specialist should be considered if goal BP cannot be achieved.

Table 9. Causes of resisitant hypertension

Improper BP Measurement
Volume Overload and Pseudotolerance

- Excess sodium intake
- Volume retention from kidney disease
- Inadequate diuretic therapy

Drug-Induced or Other Causes

- Nonadherence
- Inadequate doses
- Inappropriate combinations
- Nonsteroidal anti-inflammatory drugs; cyclooxygenase 2 inhibitors
- Cocaine, amphetamines, other illicit drugs
- Sympathomimetics (decongestants, anorectics)
- Oral contraceptives
- Adrenal steroids
- Cyclosporine and tacrolimus
- Erythropoietin
- Licorice (including some chewing tobacco)
- Selected over-the-counter dietary supplements and medicines (e.g., ephedra, ma haung, bitter orange)

Associated Conditions

- Obesity
- Excess alcohol intake

Identifiable Causes of Hypertension. (See table 4.)

PUBLIC HEALTH CHALLENGES AND COMMUNITY PROGRAMS

Public health approaches, such as reducing calories, saturated fat, and salt in processed foods and increasing community/school opportunities for physical activity, can achieve a downward shift in the distribution of a population's BP, thus potentially reducing morbidity, mortality, and the lifetime risk of an individual's becoming hypertensive. This becomes especially critical as the increase in BM I of A mericans has reached epidemic levels. N ow, 122 million adults are overweight or obese, which contributes to the rise in BP and related conditions. ${ }^{81}$ The JNC 7 endorses the A merican Public H ealth Association resolution that the food manufacturers and restaurants reduce sodium in the food supply by 50 percent over the next decade. W hen public health intervention strategies address the diversity of racial, ethnic, cultural, linguistic, religious, and social factors in the delivery of their services, the likelihood of their acceptance by the community increases. These public health approaches can provide an attractive opportunity to interrupt and prevent the continuing costly cycle of managing hypertension and its complications.

The studies that provided evidence supporting the recommendations of this report were classified and reviewed by the staff and the Executive Committee. The classification scheme is from the JNC 6 report. ${ }^{2}$

M M eta-analysis; use of statistical methods to combine the results from clinical trials

RA Randomized controlled trials; also known as experimental studies
RE Retrospective analyses; also known as case-control studies
F Prospective study; also known as cohort studies, including historical or prospective followup studies.

X Cross-sectional survey; also known as prevalence studies
PR Previous review or position statements
C Clinical interventions (nonrandomized)

AASK	African American Study of Kidney Disease and H ypertension
ACC/AHA	American College of Cardiology/A merican Heart Association
AIRE	Acute Infarction Ramipril Efficacy
ALLHAT	Antihypertensive and Lipid-Lowering Treatment To Prevent
Heart Attack Trial	

1. N ational High Blood Pressure Education Program. The sixth report of the Joint N ational Committee on Prevention, Detection, Evaluation, and Treatment of H igh Blood Pressure. Arch Intern M ed. 1997;157:2413-46. PR
2. U.S. Department of H ealth and H uman Services, N ational H eart, Lung, and Blood Institute. N ational H igh Blood Pressure Education Program. Available at: http://www.nhlbi.nih.gov/about/nhbpep/index.htm. Accessed M arch 5, 2003.
3. Sheps SG, Roccella EJ. Reflections on the sixth report of the Joint N ational Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Curr Hypertens Rep. 1999;1:342-5. PR
4. R occella EJ, K aplan N M . Interpretation and evaluation of clinical guidelines. In: Izzo JL Jr, Black HR, eds. Hypertension Primer. Dallas, TX : American H eart Association, 2003;126:126-7. PR
5. Last JM , Abramson JH, eds. A dictionary of epidemiology. 3rd ed. New York, NY: Oxford University Press, 1995.
6. Vasan RS, Larson M G, Leip EP, et al. Assessment of frequency of progression to hypertension in nonhypertensive participants in the Framingham H eart Study:
A cohort study. Lancet. 2001;358:1682-6. F
7. Vasan RS, Beiser A, Seshadri S, et al. Residual lifetime risk for developing hypertension in middle-aged women and men: The Framingham H eart Study. JAM A. 2002;287:1003-10. F
8. Lewington S, Clarke R, Qizilbash N , et al. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. L ancet. 2002;360:1903-13. M
9. Whelton PK, HeJ, Appel LJ, et al. Primary prevention of hypertension: Clinical and public health advisory from The N ational High Blood Pressure Education Program. JAM A. 2002;288:1882-8. PR
10. N eal B, M acM ahon S, Chapman N. Effects of ACE inhibitors, calcium antagonists, and other blood-pressurelowering drugs: Results of prospectively designed overviews of randomised trials. Blood Pressure Lowering Treatment Trialists' Collaboration. Lancet. 2000;356:1955-64. M
11. O gden LG, HeJ, Lydick E, Whelton PK. Long-term absolute benefit of lowering blood pressure in hypertensive patients according to the JNC VI risk stratification. Hypertension. 2000;35:539-43. X
12. Cherry DK, Woodwell DA. N ational Ambulatory M edical Care Survey: 2000 Summary. Advance D ata. 2002;328. PR
13. Izzo JL Jr, Levy D, Black HR. Clinical Advisory Statement. Importance of systolic blood pressure in older Americans. H ypertension. 2000;35:1021-4. PR
14. Cushman WC, Ford CE, Cutler JA, et al. Success and predictors of blood pressure control in diverse N orth A merican settings: The Antihypertensive and Lipid-Lowering Treatment to Prevent H eart Attack Trial (ALLHAT). J Clin H ypertens (G reenwich). 2002;4:393-404. RA
15. Black HR, Elliott WJ, N eaton JD, et al. Baseline characteristics and elderly blood pressure control in the CO N VIN CE trial. H ypertension. 2001;37:12-8. RA
16. World Hypertension League. M easuring your blood pressure. Available at: http://www.mco.edu/org/whl/bloodpre.html. Accessed April 1, 2003.
17. Pickering T. Recommendations for the use of home (self) and ambulatory blood pressure monitoring. American Society of Hypertension Ad H oc Panel. Am J Hypertens. 1996;9:1-11. PR
18. Verdecchia P. Prognostic value of ambulatory blood pressure: current evidence and clinical implications. H ypertension. 2000;35:844-51. PR
19. American Heart Association. Home monitoring of high blood pressure. Available at: http://www.americanheart.org/presenter.jhtml?identifier=576. A ccessed A pril 1, 2003.
20. GFR / $1.73 \mathrm{M}^{2}$ by MDRD (\pm SUN and SAlb) Calculator. Available at: http://www.hdcn.com/calcf/gfr.htm. Accessed April 1, 2003.
21. American Diabetes A ssociation. Treatment of hypertension in adults with diabetes. D iabetes Care. 2003;26(suppl 1):S80-S82. PR
22. N ational Kidney Foundation Guideline. K/DO QI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Kidney Disease O utcome Quality Initiative. Am J Kidney Dis. 2002;39(suppl 2):S1-S246. PR
23. The Trials of H ypertension Prevention Collaborative Research Group. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. The Trials of H ypertension Prevention, phase II. Arch Intern M ed. 1997;157:657-67. RA
24. HeJ, Whelton PK, Appel LJ, Charleston J, Klag M J. Long-term effects of weight loss and dietary sodium reduction on incidence of hypertension. H ypertension. 2000;35:544-9. F
25. Sacks FM, Svetkey LP, Vollmer W M , et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop H ypertension (DASH) diet. DA SH -Sodium Collaborative Research Group. N Engl J M ed. 2001;344:3-10. RA
26. Vollmer W M , Sacks FM , A rd J, et al. Effects of diet and sodium intake on blood pressure: Subgroup analysis of the DASH -sodium trial. Ann Intern M ed. 2001;135:1019-28. RA
27. Chobanian AV, Hill M. N ational Heart, Lung, and Blood Institute Workshop on Sodium and Blood Pressure: A critical review of current scientific evidence. H ypertension. 2000;35:858-63. PR
28. Kelley GA, K elley KS. Progressive resistance exercise and resting blood pressure: A meta-analysis of randomized controlled trials. H ypertension. 2000;35:838-43. M
29. Whelton SP, Chin A, X in X, HeJ. Effect of aerobic exercise on blood pressure: A meta-analysis of randomized, controlled trials. Ann Intern M ed. 2002;136:493-503. M
30. Xin X, HeJ, Frontini M G, et al. Effects of alcohol reduction on blood pressure: A meta-analysis of randomized controlled trials. H ypertension. 2001;38:1112-7. M
31. Black HR, Elliott WJ, Grandits G, et al. Principal results of the Controlled ON set Verapamil IN vestigation of Cardiovascular Endpoints (CON VINCE) trial. JAMA. 2003;289:2073-82. RA
32. Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): A randomised trial against atenolol. Lancet. 2002;359:995-1003. RA
33. The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. M ajor outcomes in high-risk hypertensive patients randomized to angiotensinconverting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002;288:2981-97. RA
34. The H eart Outcomes Prevention Evaluation Study Investigators. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342:145-53. RA
35. PROGRESS Collaborative Group. Randomised trial of a perindopril-based blood-pressurelowering regimen among 6,105 individuals with previous stroke or transient ischaemic attack. L ancet. 2001;358:1033-41. RA
36. Wing LM H, Reid CM , Ryan P, et al. A comparison of outcomes with angiotensin-converting-enzyme inhibitors and diuretics for hypertension in the elderly. N Engl J M ed. 2003;348:583-92. RA
37. Psaty BM , Smith N L, Siscovick DS, et al. Health outcomes associated with antihypertensive therapies used as first-line agents. A systematic review and meta-analysis. JAM A. 1997;277:739-45. M
38. Physicians' Desk Reference. 57 ed. Oradell, NJ: M edical Economics, 2003.
39. Psaty BM , M anolio TA, Smith NL, et al. Time trends in high blood pressure control and the use of antihypertensive medications in older adults: The Cardiovascular H ealth Study. Arch Intern M ed. 2002;162:2325-32. X
40. H unt SA, Baker DW, Chin M H , et al. ACC/AH A guidelines for the evaluation and management of chronic heart failure in the adult: Executive summary. A report of the American College of Cardiology/A merican H eart A ssociation Task Force on Practice Guidelines (Committee to revise the 1995 Guidelines for the Evaluation and M anagement of Heart Failure). J Am C oll C ardiol. 2001;38:2101-13. PR
41. Tepper D. Frontiers in congestive heart failure: Effect of M etoprolol $C R / X L$ in chronic heart failure: M etoprolol CR/XL R andomised Intervention Trial in Congestive H eart Failure (M ERIT-HF). Congest Heart Fail. 1999;5:184-5. RA
42. Packer M , Coats AJ, Fowler M B, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J M ed. 2001;344:1651-8. RA
43. CIBIS Investigators and Committees. A randomized trial of beta-blockade in heart failure. The Cardiac Insufficiency Bisoprolol Study (CIBIS). Circulation. 1994;90:1765-73. RA
44. The SO LVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J M ed. 1991;325:293-302. RA
45. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet. 1993;342:821-8. RA
46. K ober L, Torp-Pedersen C, Carlsen JE, et al. A clinical trial of the angiotensin-convertingenzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group. N Engl J M ed. 1995;333:1670-6. RA
47. Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J M ed. 2001;345:1667-75. RA
48. Pitt B, Z annad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. R andomized Aldactone Evaluation Study Investigators. N Engl J M ed. 1999;341:709-17. RA
49. Braunwald E, Antman EM, Beasley JW, et al. ACC/AH A 2002 guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction-summary article: A report of the American College of Cardiology/A merican H eart Association task force on practice guidelines (Committee on the M anagement of Patients With Unstable Angina). J Am Coll Cardiol. 2002;40:1366-74. PR
50. B-Blocker Heart Attack Trial Research Group. A randomized trial of propranolol in patients with acute myocardial infarction. I. M ortality results. JAM A. 1982;247:1707-14. RA
51. H ager W D, Davis BR, Riba A, et al. Absence of a deleterious effect of calcium channel blockers in patients with left ventricular dysfunction after myocardial infarction: The SAVE Study Experience. SAVE Investigators. Survival and Ventricular Enlargement. Am H eart J. 1998;135:406-13. RA
52. The Capricorn Investigators. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: The CAPRICORN randomised trial. Lancet. 2001;357:1385-90. RA
53. Pitt B, Remme W, Z annad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309-21. RA
54. UK Prospective Diabetes Study Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. BM J. 1998;317:713-20. RA
55. Lewis EJ, H unsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J M ed. 1993;329:1456-62. RA
56. Brenner BM, Cooper M E, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J M ed. 2001;345:861-9. RA
57. Lewis EJ, H unsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J M ed. 2001;345:851-60. RA
58. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in N efrologia). Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet. 1997;349:1857-63. RA
59. Wright JT Jr, Agodoa L, Contreras G, et al. Successful blood pressure control in the A frican A merican Study of Kidney Disease and H ypertension. Arch Intern M ed. 2002;162:1636-43. RA
60. Bakris GL, Weir M R , on behalf of the Study of Hypertension and Efficacy of Lotrel in Diabetes (SHIELD) Investigators. A chieving goal blood pressure in patients with type 2 diabetes: Conventional versus fixed-dose combination approaches. J Clin H ypertens. 2003;5:201-10. RA
61. Antithrombotic Trialist Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BM J. 2002;324:71-86. M
62. Pfeffer M A, Braunwald E, M oye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the Survival And Ventricular Enlargement trial. The SAVE Investigators. N Engl J M ed. 1992;327:669-77. RA
63. Lindholm LH, Ibsen H, D ahlof B, et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359:1004-10. RA
64. Bakris GL, Williams M , D workin L, et al. Preserving renal function in adults with hypertension and diabetes: A consensus approach. N ational Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J Kidney Dis. 2000;36:646-61. PR
65. Bakris GL, Weir M R. Angiotensin-converting enzyme inhibitor-associated elevations in serum creatinine: Is this a cause for concern? A rch Intern M ed. 2000;160:685-93. M
66. National Cholesterol Education Program. Third Report of the N ational Cholesterol Education Program (N CEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143-421. PR
67. Kjeldsen SE, Dahlof B, Devereux RB, et al. Effects of losartan on cardiovascular morbidity and mortality in patients with isolated systolic hypertension and left ventricular hypertrophy: a Losartan Intervention for Endpoint Reduction (LIFE) substudy. JAM A. 2002;288:1491-8. RA
68. H yman DJ, Pavlik VN. Characteristics of patients with uncontrolled hypertension in the United States. N Engl J M ed. 2001;345:479-86. X
69. Staessen JA, Wang J. Blood-pressure lowering for the secondary prevention of stroke. [Commentary]. Lancet. 2001;358:1026-7.
70. Di Bari M , Pahor M , Franse LV, et al. Dementia and disability outcomes in large hypertension trials: lessons learned from the systolic hypertension in the elderly program (SHEP) trial. Am J Epidemiol. 2001;153:72-8. RA
71. Writing Group for the Women's H ealth Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the Women's H ealth Initiative randomized controlled trial. JAM A. 2002;288:321-33. RA
72. N ational High Blood Pressure Education Program. Report of the N ational High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am J O bstet G ynecol. 2000;183:S1-S22. PR
73. N ational High Blood Pressure Education Program. Update on the 1987 Task Force Report on High Blood Pressure in Children and Adolescents: A working group report from the N ational High Blood Pressure Education Program. N ational High Blood Pressure Education Program Working Group on Hypertension Control in Children and A dolescents. Pediatrics. 1996;98(pt 1):649-58. PR
74. Barlow SE, Dietz W H. O besity evaluation and treatment: Expert Committee recommendations. The M aternal and Child H ealth Bureau, H ealth Resources and Services Administration and the Department of H ealth and H uman Services. Pediatrics. 1998;102:E29. PR
75. Barrier PA, Li JT, Jensen N M . Two words to improve physician-patient communication: What else? M ayo Clin Proc. 2003;78:211-4. PR
76. Betancourt JR, Carrillo JE, Green AR. H ypertension in multicultural and minority populations: Linking communication to compliance. Curr Hypertens Rep. 1999;1:482-8.
77. Phillips LS, Branch WT, Cook CB, et al. Clinical inertia. Ann Intern M ed. 2001;135:825-34.
78. Balas EA, Weingarten S, Garb CT, et al. Improving preventive care by prompting physicians. Arch Intern M ed. 2000;160:301-8. C
79. Boulware LE, Daumit GL, Frick KD, et al. An evidencebased review of patient-centered behavioral interventions for hypertension. Am J Prev M ed. 2001;21:221-32. PR, M
80. Hill M N, M iller NH. Compliance enhancement. A call for multidisciplinary team approaches. Circulation. 1996;93:4-6.
81. Flegal KM, C arroll $\mathrm{M} \mathrm{D}, \mathrm{O}$ gden CL , Johnson CL. Prevalence and trends in obesity among US adults, 1999-2000. JAM A. 2002;288:1723-7. X

Discrimination Prohibited: Under provisions of applicable public laws enacted by Congress since 1964, no person in the United States shall, on the grounds of race, color, national origin, handicap, or age, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity (or, on the basis of sex, with respect to any education program or activity) receiving Federal financial assistance. In addition, Executive Order 11141 prohibits discrimination on the basis of age by contractors and subcontractors in the performance of Federal contracts, and Executive Order 11246 states that no federally funded contractor may discriminate against any employee or applicant for employment because of race, color, religion, sex, or national origin. Therefore, the National Heart, Lung, and Blood Institute must be operated in compliance with these laws and Executive Orders.

For More Information

The NHLBI Health Information Center is a service of the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health. The NHLBI Health Information Center provides information to health professionals, patients, and the public about the treatment, diagnosis, and prevention of heart, lung, and blood diseases. For more information, contact:

NHLBI Health Information Center
P.O. Box 30105

Bethesda, MD 20824-0105
Phone: 301-592-8573
TTY: 240-629-3255
Fax: 301-592-8563
Web site: http://www.nhlbi.nih.gov

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health

National Heart, Lung, and Blood Institute
National High Blood Pressure Education Program

NIH Publication No. O3-5233
May 2003

[^0]: C-limpuner
 Claude Lenfant, M.D. Director N ational Heart, Lung, and Blood Institute Chair N ational High Blood Pressure Education Program

[^1]: * Drug abbreviations: ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; BB, beta-blocker; CCB, calcium channel blocker.
 $\dagger \quad$ Some drug combinations are available in multiple fixed doses. Each drug dose is reported in milligrams.

